
Simulation Relations and
Applications in Formal Methods

Kim Guldstrand Larsen1[0000−0002−5953−3384], Christian
Schilling1[0000−0003−3658−1065], and Jǐŕı Srba1[0000−0001−5551−6547]

Department of Computer Science, Aalborg University, Aalborg, Denmark
{kgl,christianms,srba}@cs.aau.dk)

Abstract. We survey the research on application of equivalence check-
ing to formal methods, with a particular focus on the notion of simula-
tion and bisimulation as well as of modal refinement on modal transi-
tion systems. We discuss the algorithmic aspects of efficiently computing
(bi)simulation relations, the extension to infinite state systems, and ex-
isting tool support. We then present results related to simulation and
bisimulation checking on timed and hybrid systems and highlight the
connections to automata theory.

Keywords: Simulation · Bisimulation · Transition system · Hybrid sys-
tem · Automata theory.

1 Foreword and Outline

In this chapter we review simulation relations and their success story in formal
methods. Written at the occasion of Tom Henzinger’s 60th anniversary, we focus
on three areas where he substantially contributed to this topic, and describe
selected works in detail. Section 3 covers the general computation of simulation
relations for finite and infinite transition systems. Section 4 covers simulation
relations in timed and hybrid systems. Section 5 covers simulation relations in
automata theory. We begin with a general introduction to simulation relations
and related concepts in the next section.

2 Transition Systems, Simulation, and Bisimulation

In this section we outline the basic notions underlying the topics discussed in the
later sections: transition systems, simulation and bisimulation relations, modal
transition systems, and modal refinement. For a detailed introduction to these
topics we refer to the literature [37,14,46,10].

0 The version of record of this article, first published in Principles of Systems
Design, is available online at the publisher’s website: https://doi.org/10.1007/
978-3-031-22337-2 13

https://doi.org/10.1007/978-3-031-22337-2_13
https://doi.org/10.1007/978-3-031-22337-2_13

2 Kim Guldstrand Larsen, Christian Schilling, and Jǐŕı Srba

2.1 Transition Systems

Simulation relations are defined over (labeled) transition systems. These are
structures to abstractly describe the behavior of systems and coincide mathe-
matically with directed edge-labeled graphs. A transition system consists of a
(finite or infinite) set of states (the nodes in the graph) and a set of transitions
connecting pairs of states (the directed edges in the graph).

Definition 1 (Transition system). A transition system is a triple TS =
(S,Λ, T) where S is a set of states, Λ is a set of labels, and T ⊆ S × Λ× S is
a transition relation whose elements are called transitions.

We write s
a−→ t for transition (s, a, t) ∈ T and generalize it to a sequence

of transitions such that s0
a1...an−−−−→ sn if there are states s1, . . . , sn−1 ∈ S where

si−1
ai−→ si for all i = 1, . . . , n. We use the following terminology: a sequence

of transitions is a path, the projection of a path to the states is a run, and the
projection of a path to the labels is a trace. Figure 1 shows an example transition
system over labels a and b with seven states and eight transitions.

Transition systems are rather general models. Many systems encountered in
computer science can be modeled with a transition system. Once a system has
been modeled as a transition system, one can use all the tools that have been
developed for their analysis. But this generality comes with a price: transition
systems for most interesting systems are huge or even infinite. This implies that
typical graph algorithms such as state space search are expensive or may not
even terminate.

The main approach to reduce the size of transition systems, possibly even
making an infinite transition system finite, is through quotienting. For an equiv-
alence relation ≡ ⊆ X × X we denote the equivalence class of e ∈ X by [e]≡.
Given a transition system and an equivalence relation over its states, the in-
duced quotient transition system is obtained by merging all equivalent states
and remapping the corresponding transitions. Formally:

Definition 2 (Quotient transition system). Given a transition system TS =
(S,Λ, T) and an equivalence relation ≡ ⊆ S × S, the quotient transition system
is TS/≡ = (S/≡, Λ, T/≡) with states S/≡ = {[s]≡ | s ∈ S} and transitions
T/≡ = {([s]≡, a, [t]≡) | (s, a, t) ∈ T}.

Note that we have not put any restriction on ≡ above. Thus we cannot guar-
antee many properties about the quotient system. What is true for any relation
≡ is that reachability is preserved: if there is a path s

w−→ t in TS , then there is
a path [s]≡

w−→ [t]≡ in TS/≡. Guaranteeing more interesting properties, such as
trace equivalence, requires more structure in the relation ≡. Prominent families
of relations that provide such structure are simulations and bisimulations.

2.2 Simulation and Bisimulation

The concept of simulation relations, or simulations for short, dates back to Mil-
ner [83]. Roughly speaking, a state s′ simulates a state s if any transition from

Simulation Relations and Applications in Formal Methods 3

s to a state t can be matched by a transition with the same label leading from
s′ to a state t′ such that t′ again simulates the state t.

Definition 3 (Simulation). Given a transition system TS = (S,Λ, T), a bi-
nary relation R ⊆ S × S is a simulation if for all a ∈ Λ and s, s′ ∈ S with
(s, s′) ∈ R the following holds: for all t ∈ S such that s

a−→ t there exists t′ ∈ S

such that s′
a−→ t′ and (t, t′) ∈ R.

If (s, s′) ∈ R, we say that s′ simulates s. While simulations are locally de-
fined, they also provide the global guarantee that, intuitively, s′ has at least
the same set of traces as s (and hence simulation implies trace inclusion). Note
that for a given transition system there may exist multiple simulations, and that
simulations need neither be reflexive nor transitive. However, the union of all
simulations ≼ is itself a simulation (namely the coarsest one), which is a reflex-
ive and transitive relation called the simulation preorder. In the following, we
are typically interested in the simulation preorder. The simulation preorder ≼
induces a similarity relation ≃ ⊆ S × S such that s ≃ t if and only if s ≼ t and
t ≼ s. Thus ≃ is the maximal symmetric subset of ≼ and hence an equivalence
relation. A symmetric simulation R ⊆ S × S is called a bisimulation [86]. The
following definition is equivalent:

Definition 4 (Bisimulation). Given a transition system TS = (S,Λ, T), a
binary relation R ⊆ S × S is a bisimulation if for all a ∈ Λ and s, s′ ∈ S with
(s, s′) ∈ R the following holds:

• for all t ∈ S such that s
a−→ t there exists t′ ∈ S such that s′

a−→ t′ and
(t, t′) ∈ R, and

• for all t′ ∈ S such that s′
a−→ t′ there exists t ∈ S such that s

a−→ t and
(t, t′) ∈ R.

As for simulations, bisimulations are not unique and they may be neither
reflexive nor transitive. Again, the union of all bisimulations ∼ is itself a bisim-
ulation (namely the coarsest one), which is an equivalence relation called bisim-
ilarity. In the following, we are typically interested in the bisimilarity relation.

Observe that similarity ≃ is generally coarser than bisimilarity ∼ (as wit-
nessed in the example below). Thus computing the similarity relation may be
more interesting; for instance, when used for quotienting, it yields a smaller tran-
sition system. However, computing a simulation relation is typically harder than
computing the corresponding bisimulation relation [68].

Consider the transition system in Figure 1. The states s3 and s7 have no
outgoing transitions, so they cannot be distinguished and must be similar and
bisimilar: s3 ≼ s7 ≼ s3 and s3 ∼ s7. The states s2 resp. s5 only have transitions
with a and b to s3 resp. s7, which we already know are bisimilar; hence the same
holds for s2 and s5: s2 ≼ s5 ≼ s2 and s2 ∼ s5. The state s6 on the other hand has
no outgoing a-transition and hence cannot simulate (nor bisimulate) s2 and s5,
but those states simulate s6: s6 ≼ s2 and s6 ≼ s5. The state s1 clearly simulates
s4, but the converse also holds due to s5: s1 ≼ s4 ≼ s1. Yet s1 and s4 are not

4 Kim Guldstrand Larsen, Christian Schilling, and Jǐŕı Srba

s1 s2 s3 s4

s5

s6

s7
a a, b

a

a

a, b

b

Fig. 1. A transition system.

≼ s1 s2 s3 s4 s5 s6 s7 ∼ s1 s2 s3 s4 s5 s6 s7

s1 ✓ ✓ s1 ✓
s2 ✓ ✓ s2 ✓ ✓
s3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ s3 ✓ ✓
s4 ✓ ✓ s4 ✓
s5 ✓ ✓ s5 ✓ ✓
s6 ✓ ✓ ✓ s6 ✓
s7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ s7 ✓ ✓

Table 1. Simulation preorder≼ and bisimilarity∼ for the transition system in Figure 1.
A pair in the relation is marked with ✓. The shaded cells correspond to similarity ≃.

bisimilar because of s6. The complete relations are given in Table 1. The shaded
cells mark the similarity relation ≃; observe that here similarity ≃ is strictly
coarser than bisimilarity ∼, as it includes the pairs (s1, s4) and (s4, s1).

There is also a game-theoretic characterization of the simulation preorder
(see [93,95] for an early proposal and discussion and [82] for a detailed introduc-
tion). Consider the two-player “imitation game” where each player has a token
on one state. In each round, the first player, called antagonist, moves their to-
ken along a transition and the second player, called protagonist, has to move
the other token along a transition of the same label. The game ends if a player
cannot move, making the other player win. Otherwise, the game is infinite and
the protagonist wins. We have that s ≼ t holds for states s and t if, in a game
where the antagonist’s token starts on s and the protagonist’s token starts on t,
the protagonist has a winning strategy. That means: a rational protagonist can
always imitate the antagonist’s move.

A similar characterization exists for bisimilarity. The only change of rules
is that, at the beginning of each round, the antagonist may choose to swap the
tokens. Hence the antagonist has more chances to win. From this characterization
it is clear that bisimilarity is symmetric and generally finer than similarity.

In the context of model checking, simulation and bisimulation are alterna-
tively defined for Kripke structures, which are transition systems with state
labels. In that case, the additional requirement for a state s simulating a state
t is that the labels of s and t are identical. If we consider the labels of a state
“public information,” this is in line with the original intuition that s simulates t

Simulation Relations and Applications in Formal Methods 5

if an observer cannot determine whether a trace starting from t may have started
from s instead. See also [14] for a discussion of these two system models.

We have motivated simulations for the purpose of quotienting to reduce the
size of a transition system. More generally, one can use simulations to establish a
formal relation between transition systems. If we consider transition systems with
initial states, then a transition system TS 1 simulates a transition system TS 2 if
for each initial state of TS 2 there is a simulating initial state of TS 1. Simulation
can be used as a formal proof that a reactive system, e.g., a controller, works
correctly in an adversary environment: to stay in the game-theoretic view, the
environment takes the role of the antagonist and the controller takes the role
of the protagonist. Similarly, one can establish levels of abstractions of systems,
e.g., a specification and an implementation, which are also called refinement
mappings [1]. Quotienting is one way to find such abstractions (see [19,30,36] for
some examples).

2.3 Modal Transition Systems and Modal Refinement

An important practical application of equivalence checking is a component-based
software development and stepwise refinement process. Assuming that we have a
system specification expressed as a transition system (that is usually generated
from some higher-level specification language), our aim is to refine (possibly in
several steps) the given component specification by adding more implementation
details, while preserving a suitable equivalence/preorder with the initial specifi-
cation. However, should bisimulation be used as the notion of equivalence, we are
required to describe all the implementation details already in the specification
because bisimulation is a too strict notion requiring that any action of the spec-
ification must be matched in the implementation and vice versa. On the other
hand, the notion of simulation allows us to create several variants of the given
specification, as it only requires that any refined process must be simulated by
its specification (and hence every behavior of the refined process is guaranteed
to be sound). The drawback is that an empty implementation (where the initial
state is deadlocked) is trivially simulated by any given specification, whereas it
is clearly not an intended product implementation.

It is hence clear that for a usable stepwise refinement process, we need to use
a relation/preorder that is less strict than bisimulation but at the same time it
must enforce some minimum system behavior that a simulation relation cannot
guarantee. One possible answer to this problem was suggested by Larsen and
Thomsen [75] (for an overview paper see also [10]) in terms of modal transition
systems and the notation of modal refinement.

In a modal transition system, transitions are split into may and must tran-
sitions: any refinement of a specification is then allowed to implement any may-
transition, and at the same time it is required to preserve any must-transition.
This allows to encode some minimal required process behavior while at the
same time allowing for different variants during the refinement process as may-
transitions are not mandatory to be implemented.

6 Kim Guldstrand Larsen, Christian Schilling, and Jǐŕı Srba

VM1:
coin

coffee

tea

VM2:
coin

coffee

tea

VM3:
coin

coffee

tea

VM4:
coin

coffee

tea

VMA:
coin

VMB :
coin

coffee

VMC :
coin

coffee

tea coin

coffee

VMD:
coin

tea

coffee coin

coffee

VME :
coin

coffee

tea

VMF :

Fig. 2. Four specifications of a vending machine, VM1-VM4, and six different imple-
mentations VMA-VMF .

Definition 5 (Modal transition system). A modal transition system is a
tuple TS = (S,Λ, Tmay, Tmust) where S is a set of states, Λ is a set of labels,
and Tmust ⊆ Tmay ⊆ S × Λ× S are may resp. must transition relations.

We write s
a−→ t for transition (s, a, t) ∈ Tmust and s

a
99K t for transition

(s, a, t) ∈ Tmay ∖ Tmust. Intuitively, every must-transition of the specification
must be matched in the refined process, and every may-transition of a refined
process must be matched in the specification. This gives rise to a co-inductive
definition of a modal refinement, generalizing the notion of bisimulation to modal
transition systems.

Definition 6 (Modal refinement). Given a modal transition system TS =
(S,Λ, Tmay, Tmust), a binary relation R ⊆ S×S is a modal refinement if for all
a ∈ Λ and s, s′ ∈ S with (s, s′) ∈ R the following holds:

• for all t ∈ S such that s
a

99K t there exists t′ ∈ S such that s′
a

99K t′ and
(t, t′) ∈ R, and

• for all t′ ∈ S such that s′
a−→ t′ there exists t ∈ S such that s

a−→ t and
(t, t′) ∈ R.

We say that s is a modal refinement of s′ if there exists a modal refinement
relation R such that (s, s′) ∈ R. The definition of modal refinement resembles
that of simulation/bisimulation. Indeed, if every may-transition is also a must-
transition (Tmay = Tmust), modal refinement and bisimulation coincide. On the
other hand, if the modal transition system does not contain any must transitions,
the obtained notion of modal refinement defines a simulation relation.

In Figure 2 the authors of [16] demonstrate four possible specifications of a
vending machine and six possible implementations. The first specification VM1

Simulation Relations and Applications in Formal Methods 7

does not require any behavior (contains no must-transitions), but it allows to
execute a coin-transition, after which both tea and coffee-transitions may be
executed. All six implementations VMA, . . . ,VMF are refinements of VM1. The
second specification VM2 requires that the coin-transition must be present but
implementing the tea and coffee-transitions is optional. This excludes the ma-
chine VMF that contains only the deadlock state from being a refinement of
VM2. The third specification VM3 requires that, if a coin is inserted, at least the
coffee-transition must be implemented. This excludes VMA from being a correct
implementation of VM3 while all other implementations (including VMF) are in
refinement with VM3. Finally, the specification VM4 ensures that inserting the
coin and providing a coffee is mandatory while returning tea is optional. There
are four valid refinements of VM4, namely VMB , VMC , VMD and VME .

Hence modal transition systems in connection with modal refinement rela-
tions allow for a stepwise refinement process in system modeling and generalize
the notion of simulation and bisimulation, allowing to be more specific which
transitions should be preserved in which direction. For further results about
modal transition systems and its extensions, we refer to [10,11,12,73,15,17].

3 Computing Simulations on Finite and Infinite Graphs

In this section we review results about computing (bi)simulations for finite and
infinite graphs. The work of Tom Henzinger we summarize here is [88]. That pa-
per has two main contributions. The first contribution is an efficient algorithm
to compute the simulation preorder on finite transition systems, together with
an extension to infinite transition systems. The second contribution is an algo-
rithm to compute the similarity relation for a class of hybrid automata, which
is discussed in the next section.

Two states are trace equivalent if the set of outgoing traces coincide. Trace
equivalence is coarser than similarity. The authors advocate similarity as a mid-
dle ground between bisimilarity and trace equivalence, for the following reasons.

First there is the aspect of computational complexity. Computing bisimilarity
for finite transition systems with n states and m transitions is an O(m log n)
problem [85]. Computing trace equivalence is a PSPACE-complete problem [94].
The authors propose an O(mn) algorithm for computing the simulation preorder
(a similar result has been independently obtained at the same time [20]). For an
overview of the algorithms for computing bisimulation we refer to [4]. Similarly,
deciding if two systems are in modal refinement can be done in polynomial
time, while checking whether every implementation of one specification is also
an implementation of another specification becomes EXPTIME-complete [18].

Second, similarity is coarser than bisimilarity, and so the corresponding quo-
tient is smaller, but at the same time the quotient still preserves useful properties.
On the one hand, two states are bisimilar if and only if they satisfy the same
formulae in branching temporal logic (CTL or CTL∗). Hence for such logics,
similarity is not of interest. On the other hand, two states are trace equivalent
if and only if they satisfy the same formulae in the widely used linear temporal

8 Kim Guldstrand Larsen, Christian Schilling, and Jǐŕı Srba

logic (LTL). Moreover, two states are similar if and only if they satisfy the same
formulae in branching temporal logic without quantifier switches. (See [14] for
proofs of these statements.) Thus computing the similarity quotient is useful.

Third, as a consequence of the smaller quotient, transition systems with
infinite bisimilarity quotient may still yield a finite similarity quotient, which
allows for effective computations and decision procedures. The authors extend
their algorithm to a symbolic algorithm applicable to infinite but “effectively
presented” transition systems, in the line of [21,77]. The symbolic algorithm
terminates if the similarity quotient is finite.

3.1 Further Results About Infinite State Systems

The decidability of bisimilarity, equivalence with a given finite state system, as
well as the regularity problem (does there exist a finite state system equivalent to
the given system) were extensively studied for different types of process algebra
generating infinite state systems (for an overview see [91]; further details about
the used techniques can be found in [84,24,70]). The classes of infinite state sys-
tems include the process algebras BPA (basic process algebra) and BPP (basic
parallel processes) that support a pure sequential resp. parallel composition, their
generalization PA (process algebra) allowing to mix both the sequential and par-
allel operators, as well as transition systems described by Petri nets (a model of
parallel processes allowing for synchronization) and pushdown automata (adding
a finite control-state unit to the BPA processes).

All these systems can be uniformly described by the formalism of process
rewrite systems suggested by Mayr [80], and the results indicate (for references
consult [91]) that for the simple process algebras BPA and BPP, bisimulation
and regularity are decidable, and bisimilarity of a BPA or BPP process with a
given finite state system can be decided even in polynomial time. Decidability of
bisimulation, equivalence with a finite state system and regularity is preserved
for the class of pushdown automata, however, with higher complexity bounds.
Decidability of bisimulation and regularity for PA process algebra remains an
open problem, while for Petri nets only regularity and equivalence with a finite
state system remains decidable while bisimulation checking becomes undecidable
by the application of the defender’s forcing technique [64].

3.2 Tools for Equivalence Checking

There exist a number of tools supporting equivalence/bisimulation checking,
including Edinburgh Concurrency Workbench and its successors [32,31,33], and
tools like CADP [44], mCRL2 [23], TAPAs [26] and FDR3 [47]. Several of these
tools rely on the fixed-point calculation of the bisimilarity. More recently, on-
the-fly methods based on dependency graphs [40] have been used in tools like
CAAL [9] and allow for an early termination without the need of enumerating
the full state space.

Simulation Relations and Applications in Formal Methods 9

4 Simulation Relations for Timed and Hybrid Systems

In this section we review simulation relations in the context of hybrid sys-
tems [5,54], i.e., dynamical systems with mixed discrete and continuous behavior.

4.1 Timed Systems

The timed automaton model, introduced by Alur and Dill [6,7], is an established
formalism for describing the behavior of real-time systems. Initially, the focus
was on model checking with respect to a variety of logics, and only later the
notions of (timed and untimed) bisimulation and simulation were considered.

Given a finite set of clocks C, we denote by Φ(C) all conjunctions of simple
clock constraints of the form x ▷◁ k, where x ∈ C, ▷◁ ∈ {<,≤,=,≥, >}, k ∈ N.
The semantics of clocks is given by a clock valuation v : C → R≥0 assigning
non-negative real values to clocks. Thus a clock constraint ϕ denotes a set of
clock valuations. By v ∈ ϕ we mean that the valuation v satisfies the constraint
ϕ. If v is a clock valuation and d ∈ R≥0, v + d is the clock valuation such that
(v + d)(x) = v(x) + d for all x ∈ C. Also, if r ⊆ C, we denote by v[r] the clock
valuation where v[r](x) = 0 if x ∈ r and v[r](x) = v(x) if x ̸∈ r.

Definition 7. A timed automaton is a tuple A = (Loc, ℓ0, C, Λ, I, T) where Loc
is a finite set of locations, ℓ0 ∈ Loc is the initial location, C is a finite set of
clocks, Λ is a set of labels, I : Loc → Φ(C) is a mapping assigning invariants to
locations, and T ⊆ Loc × Φ(C)× Λ× 2C × Loc is a set of transitions.

The semantics of a timed automaton A is given by an infinite-state timed
transition system, where states are location-valuation pairs (ℓ, v). Transitions
are labeled with either discrete labels from Λ or delays from R≥0 as follows:

– (ℓ, v)
a−→ (ℓ′, v′) iff v ∈ g and v′ = v[r] for some transition (ℓ, g, a, r, ℓ′) ∈ T ,

– (ℓ, v)
d−→ (ℓ, v + d) iff v + d ∈ I(ℓ).

We shall denote by (ℓ, v)
ϵ−→ (ℓ, v′) that (ℓ, v)

d−→ (ℓ, v′) for some delay d ∈ R≥0,
and refer to the transition as a time-abstracted transition, and the resulting
transition system as the untimed transition system.

The notions of bisimulation and simulation may readily be applied to timed
automata based on either the timed or untimed transition system semantics. Now
consider the four timed automata from [3] depicted in Figure 3. Here A and X

are not timed bisimilar as (X, y = 0)
2−→ a−→ cannot be matched by (A, y = 0).

However, it can be seen that A and X are untimed bisimilar and that A is timed
simulated by X. Considering A and U , it can be seen that they are not even

untimed bisimilar (and hence not timed bisimilar): the transition (A, y = 0)
2−→

(A, y = 2) leads to a state that cannot perform a, while from (U, y = 0), a is
always enabled regardless of the delay. However, U timed simulates A. Finally,
it can be argued that U and U ′ are timed bisimilar.

10 Kim Guldstrand Larsen, Christian Schilling, and Jǐŕı Srba

A

B

C

X

Y

Z

U

V

W

U ′

V ′

W ′

V V

y ≤ 1

a

y := 0

y ≤ 1

a

y := 0

y ≤ 2

a

y ≤ 2

a

a

y ≤ 2

a

y ≤ 2

a

y ≤ 2

a

y > 2 a

Fig. 3. Four timed automata. The initial locations are marked with double circles.

Several decision problems for timed automata are settled using the so-called
region graph construction (see, e.g., [3]), essentially partitioning the infinite
state-space of a timed automaton into a finite number of equivalence classes
that are stable with respect to untimed bisimulation. From this region graph,
the decidability of the untimed versions of bisimulation and simulation for timed
automata follows (see, e.g., [76]).

In contrast to the untimed setting, the decidability of timed bisimulation
(and timed simulation) was for some time an open question, which was of par-
ticular importance to the several real-time process calculi that were developed
in parallel with (and essentially equivalent to) timed automata at the time, e.g.,
the calculus of TCCS by Wang Yi [98]. However, in 1992 [28], Karlis Cerans
conclusively demonstrated decidability of timed bisimulation through an elegant
application of regions to a product construction, essentially constituting a timed
game between two timed automata to be shown timed bisimilar. The decid-
ability of synthesis for timed games in [13] provides a proof of decidability of
timed bisimilarity. Another alternative proof can be obtained by reducing timed
bisimulation to model checking using the characteristic formula construction
given in [72].

4.2 Tools for Analyzing Timed Systems

The first tool supporting analysis of timed bisimulation (in fact a timed version
of modal refinement) was the tool EPSILON [29], directly basing its implemen-
tation on the region construction by Cerans [28]. Only two years later, in 1995,
the tool UPPAAL [74] was launched at the very first edition of TACAS [22];
UPPAAL is by now the standard tool for analyzing timed automata. Strongly
encouraged by Tom Henzinger, the branch UPPAAL TIGA, supporting the syn-
thesis for timed games, was launched in 2005 [27]. Later, supporting refinement

Simulation Relations and Applications in Formal Methods 11

between timed modal specification (in the shape of timed I/O automata), the
branch ECDAR—effectively replacing EPSILON—was launched in 2010 [38].

4.3 Beyond Timed Systems

Recall Tom Henzinger’s work in [88] from Section 3. As a concrete example
for applying similarity, the authors discuss a subclass of rectangular hybrid
automata [58]. In that subclass, all constraints and continuous dynamics are
described by Cartesian products of (nonempty, possibly open, and possibly un-
bounded) intervals [l, u] ⊆ R≥0 whose end points l, u ∈ N are natural numbers.
(The restriction to nonnegative numbers is crucial.) In particular, the dynamics
are described by drifting clocks. For this class of systems (which induces an un-
countable but effectively presented transition system), it is known that in two
dimensions the bisimilarity quotient is infinite [53]. The authors prove that the
similarity quotient is finite. (It was conjectured that this result holds in higher
dimensions as well, but the authors later showed that simulation and bisimula-
tion equivalence degenerate to equality in more than two dimensions [57].) An
intuitive explanation is that similarity corresponds to the intersection of the two
finite bisimilarity relations obtained by looking at the extremal slopes of the
drifting clocks. As a direct consequence, model checking LTL (or non-quantifier-
switching branching temporal logic) formulae is decidable.

The generalization to automata where the intervals in one dimension are not
restricted to nonnegative reals yields infinite similarity quotients, but the quo-
tient tiles the plane in a regular manner such that LTL model checking is possible
with a procedure based on a pushdown ω-automaton that stores the integer part
of the second dimension. When relaxing the nonnegativity constraints such that
both dimensions can range into the negative reals, then already the bisimilarity
quotient is finite [53]. The first model checker for rectangular and linear hybrid
automata was HYTECH [55].

Simulation relations and abstraction have also been applied to general non-
linear hybrid systems (e.g., [56,71,96]). A popular notion in the context of hybrid
systems is approximate (bi)simulation [49,48]. The idea is that two systems need
not be identical but remain bounded by some distance, possibly with two pa-
rameters [66]. Some notable use cases are control systems with inputs [87] and
digital control systems [79].

5 Simulation Relations and Automata Theory

In this section we review simulation relations in the context of automata theory.

5.1 Fair Simulation

The work of Tom Henzinger we summarize here is [59]. The main contribution of
that paper is a definition of fair simulation—a notion of simulation under fairness
constraints—that can be computed in polynomial time. The paper presents an

12 Kim Guldstrand Larsen, Christian Schilling, and Jǐŕı Srba

automata-theoretic algorithm to compute a fair simulation relation and also has
applications in automata theory, which we shall describe later.

Determining trace inclusion (i.e., whether the set of traces starting in some
state is included in the set of traces starting in another state) for a finite transi-
tion system is PSPACE-complete [94]. Analogously, one can define tree inclusion:
A state s tree-includes a state t if every tree of observations that can be embed-
ded in the unrolling of the transition system starting in t can also be embedded
in the unrolling of the transition system starting in s. Tree inclusion happens to
coincide with similarity.

For liveness properties, one typically only considers the fair behaviors of a
transition system. A prominent example is Büchi fairness: an infinite trace is fair
if some event (such as reading a certain label) repeats infinitely often.

One main benefit of (ordinary) simulation over trace inclusion is the compu-
tation in polynomial time. Fair trace inclusion is a straightforward generalization
of trace inclusion. But the corresponding generalization of simulation is not ob-
vious. There have been other proposals how to define fair simulation. Two of
them [50,78] are discussed in the paper, but they do not provide a practical
computational advantage over fair trace inclusion: computing the fair simula-
tion in [50] is PSPACE-complete [69] and computing the fair simulation in [78]
is still NP-complete [62].

The newly suggested definition1 of fair simulation uses a game-theoretic char-
acterization and is based on a strategy: state t fairly simulates state s if there
exists a strategy such that for every fair run s0s1 · · · emerging from s0 = s the
run t0t1 · · · emerging from t0 = t of the same length and induced by the strategy
is also fair and we have that ti fairly simulates si for each i ≥ 0.

The new definition of fair simulation lies strictly between those in [50,78].
For vacuous fairness constraints, all three definitions coincide with simulation.
For deterministic systems, all three definitions coincide with fair trace inclusion.

Fair simulation as defined above enjoys the theoretical property that it is
monotonic: given a fair simulation, every (ordinary) simulation that is a super-
set is also a fair simulation. Then it follows that a finite-state strategy suffices,
and even a memoryless strategy for Büchi fairness constraints. The authors re-
duce the problem of computing a fair simulation relation (respectively finding a
winning strategy) to the nonemptiness problem of tree automata. The algorithm
to check weak (Büchi) or strong (Streett) fairness constraints is polynomial in
the size of the transition system, and in the latter case exponential in the size
of the Streett constraint.

As an alternative characterization, the authors extend tree inclusion to fair
tree inclusion: a computation tree is fair if all infinite paths correspond to fair
behaviors. A state t fairly tree-includes a state s if every fair computation tree
starting in s can also be started in t.

1 The original definition is given for transition systems with labeled states. Here we
use an adaptation to labeled transitions.

Simulation Relations and Applications in Formal Methods 13

Yet another characterization of fair simulation is that fair similarity is the
coarsest abstraction that preserves equivalence of all formulae in the fair univer-
sal fragment (defined by the authors) of the alternation-free µ-calculus [19].

Fair simulation has been applied in multiple contexts. In [61] the authors show
that fair bisimulation preserves equivalence in the fair (but not necessarily uni-
versal) fragment of the alternation-free µ-calculus and in CTL∗. Fair simulation
can be checked in a compositional framework using assume-guarantee reason-
ing [60]. More recently, fair simulation has been extended to tree automata and
probabilistic automata, both with Büchi acceptance condition [97]. In particular,
that approach models Büchi automata coalgebraically. In the next subsection, we
describe common applications of fair simulation and other simulation relations
in the broader context of automata theory.

5.2 Language Inclusion and Minimization

Simulation relations play a prominent role in automata theory as an efficient
way to solve hard problems in practice. In particular, simulation is a sufficient
condition for trace inclusion.

One hard problem in automata theory is language inclusion: is the language of
automaton A included in the language of automaton B? A candidate sufficient
condition could be that the initial state of B simulates the initial state of A.
However, most automata have an acceptance condition, often represented by a
set of accepting states F . In such cases, ordinary simulation of the initial state
does not imply language inclusion. In addition, the acceptance condition needs
to be taken into account in the definition of the simulation relation.

A second important problem in automata theory is to reduce the size (usually
the number of states) of an automaton. Traditionally, such procedures are said to
minimize the automaton, although many of them do not actually find a minimum
result; this is however intended because exact minimization is typically a hard
problem itself [65,89,45]. Minimization is motivated because many algorithms
operating on automata scale with the automaton size. The common approach to
minimization is quotienting: merging states according to an equivalence relation.

Consider the class of finite automata, for which the acceptance criterion is
simple. In this case, one can resort to direct simulation: for p to directly simu-
late q, in addition to ordinary simulation we also require that p ∈ F if q ∈ F .
For deterministic finite automata (DFA), the corresponding direct bisimulation
quotient coincides with the canonical minimal DFA, which can be found effi-
ciently [63]. For nondeterministic finite automata, the direct simulation can be
used for language inclusion and minimization [39].

A three-step algorithm to reduce a Kripke structure to a unique simulation-
equivalent minimum is described in [25]. The algorithm first constructs a quotient
structure, then eliminates transitions, and finally deletes unreachable states.

One of the most applied automaton classes in the literature is the Büchi
automaton. It has its main application in the context of LTL model checking,

14 Kim Guldstrand Larsen, Christian Schilling, and Jǐŕı Srba

where an LTL formula is converted to a Büchi automaton. This automaton can
get very large, so minimization is an important tool.

The works in [90] and [42] use simulation relations to minimize Büchi au-
tomata. The authors of [90] use direct and backward simulation (essentially
direct simulation, but swapping the direction of the transitions in the automa-
ton). The authors of [42] use a notion of fair simulation that is stronger than the
one in [59] but more efficient to implement.

A systematic study of simulation and bisimulation relations for minimization
and language inclusion of Büchi automata is presented in [43]. The authors
describe how to compute the direct simulation [39] and the fair simulation by
Henzinger et al. [59] in a unified framework by reduction to a parity game. The
computation is more efficient than the previous algorithm in [59]. Fair simulation
as defined before can be used for checking language inclusion but cannot be used
for minimization (the obtained language may change). The authors propose a
delayed simulation for the purpose of minimizing Büchi automata.

An alternative minimization algorithm based on fair simulation with some
careful handling to preserve the language is proposed in [51]. An extension of
fair and delayed simulation to generalized Büchi automata is given in [67].

Further works focus on stronger reductions for nondeterministic Büchi au-
tomata, which in the game view means to give more power to the protagonist.

Etessami proposes the extension to k-simulation [41]. The protagonist has
k tokens that can all advance at the same time and be redistributed at any
time. This can be seen as applying the subset construction with sets of size
up to k. For a fixed k, computing k-simulations is polynomial. For k = n, k-
simulation corresponds to trace inclusion. Since k-simulation is not transitive,
so the transitive closure must be chosen for quotienting.

Clemente describes two simulation relations [34]. The first relation is fixed-
word simulation: here the antagonist initially chooses a word. After that, both
players need to move according to the next letter in the word, as usual. This
gives more power to the protagonist because the suffix is known at any time.
The author shows that adding multiple tokens (see k-simulation above) does not
add more power. But fixed-word simulation is PSPACE-complete. The second
relation is proxy simulation, which is a refinement of backward simulation. It
can be seen as iteratively re-playing the game in the new quotient automaton
until there is no change. Delayed proxy simulation allows for language-preserving
quotienting. Computing a proxy simulation is polynomial.

Mayr and Clemente propose further simulation techniques both for transition
pruning and state quotienting [81]. For the latter purpose, the authors introduce
k-lookahead simulation: the antagonist takes k steps, then the protagonist takes
up to k steps, and finally the antagonist backtracks the steps that were not taken.
The advantage over k-simulation [41] is its efficiency: one only needs to store at
most n2 configurations. Notably, this approach works well to shrink random
automata, which typically do not contain structure to exploit. In a recent work,
the same authors use combinations of backward and forward trace inclusion and

Simulation Relations and Applications in Formal Methods 15

simulation relations for testing language inclusion [35]. The paper also contains
a technical overview of different proposals from the literature.

Simulation relations have also been applied to other classes of automata. Tree
automata generalize finite automata from words to tree structures. A minimiza-
tion algorithm for bottom-up tree automata based on two types of simulation
relations is proposed in [2]. The first type is downward simulation, which gen-
eralizes backward simulation for finite automata. The second type is upward
simulation, which is however not language-preserving. The authors describe a
combination that, in the worst case, leads to the same reduction as with down-
ward simulation, but the additional knowledge from the upward simulation often
yields better results.

The visibly pushdown automaton (VPA) [8] is a restricted form of a push-
down automaton where the stack access is determined by the input symbol. Srba
considers several types of simulation and bisimulation [92]. The standard bisim-
ulation game is used to determine bisimilarity. The problems of computing the
respective preorders and equivalences are all EXPTIME-complete, and PSPACE-
complete if the stack is a counter. For the purpose of minimization, Heizmann et
al. extend bisimulation to visibly pushdown automata for quotient-based mini-
mization [52]. One difficulty of VPA is that, unlike for finite automata, merging
states (and hence simulation) is not transitive: given three states q1, q2, q3, if
merging q1 and q2 or q2 and q3 preserves the language, merging all three states
may still alter the language.

Acknowledgments

This research was partly supported by DIREC - Digital Research Centre Den-
mark and the Villum Investigator Grant S4OS.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.
Sci. 82(2), 253–284 (1991), https://doi.org/10.1016/0304-3975(91)90224-P

2. Abdulla, P.A., Hoĺık, L., Kaati, L., Vojnar, T.: A uniform (bi-)simulation-based
framework for reducing tree automata. Electron. Notes Theor. Comput. Sci. 251,
27–48 (2009), https://doi.org/10.1016/j.entcs.2009.08.026

3. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling,
Specification and Verification. Cambridge University Press (2007)

4. Aceto, L., Ingólfsdóttir, A., Srba, J.: The algorithmics of bisimilarity. In: Advanced
Topics in Bisimulation and Coinduction, Cambridge tracts in theoretical computer
science, vol. 52, pp. 100–172. Cambridge University Press (2012)

5. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.: Hybrid automata: An algo-
rithmic approach to the specification and verification of hybrid systems. In: Hybrid
Systems. LNCS, vol. 736, pp. 209–229. Springer (1992), https://doi.org/10.1007/
3-540-57318-6 30

6. Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: ICALP. LNCS,
vol. 443, pp. 322–335. Springer (1990), https://doi.org/10.1007/BFb0032042

https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1016/j.entcs.2009.08.026
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/BFb0032042

16 Kim Guldstrand Larsen, Christian Schilling, and Jǐŕı Srba

7. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994), https://doi.org/10.1016/0304-3975(94)90010-8

8. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC. pp. 202–211.
ACM (2004), https://doi.org/10.1145/1007352.1007390

9. Andersen, J.R., Andersen, N., Enevoldsen, S., Hansen, M.M., Larsen, K.G., Olesen,
S.R., Srba, J., Wortmann, J.K.: CAAL: concurrency workbench, Aalborg edition.
In: ICTAC. LNCS, vol. 9399, pp. 573–582. Springer (2015), https://doi.org/10.
1007/978-3-319-25150-9 33

10. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: 20 years of modal
and mixed specifications. Bull. EATCS 95, 94–129 (2008)

11. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: Com-
plexity of decision problems for mixed and modal specifications. In: FOS-
SACS. LNCS, vol. 4962, pp. 112–126. Springer (2008), https://doi.org/10.1007/
978-3-540-78499-9 9

12. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: EXPTIME-
complete decision problems for modal and mixed specifications. ENTCS 242(1),
19–33 (2009), https://doi.org/10.1016/j.entcs.2009.06.011

13. Asarin, E., Maler, O., Pnueli, A.: Symbolic controller synthesis for discrete and
timed systems. In: Hybrid Systems. LNCS, vol. 999, pp. 1–20. Springer (1994),
https://doi.org/10.1007/3-540-60472-3 1

14. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
15. Bauer, S.S., Juhl, L., Larsen, K.G., Srba, J., Legay, A.: A logic for accumulated-

weight reasoning on multiweighted modal automata. In: TASE. pp. 77–84. IEEE
Computer Society (2012), https://doi.org/10.1109/TASE.2012.9

16. Benes, N., Křet́ınský, J., Larsen, K.G., Srba, J.: On determinism in modal transi-
tion systems. Theor. Comput. Sci. 410(41), 4026–4043 (2009), https://doi.org/10.
1016/j.tcs.2009.06.009

17. Beneš, N., Křet́ınský, J., Larsen, K.G., Møller, M.H., Srba, J.: Parametric modal
transition systems. In: ATVA. LNCS, vol. 6996, pp. 275–289. Springer (2011),
https://doi.org/10.1007/978-3-642-24372-1 20

18. Beneš, N., Křet́ınský, J., Larsen, K.G., Srba, J.: Checking thorough refinement on
modal transition systems is EXPTIME-complete. In: ICTAC. LNCS, vol. 5684, pp.
112–126. Springer (2009), https://doi.org/10.1007/978-3-642-03466-4 7

19. Bensalem, S., Bouajjani, A., Loiseaux, C., Sifakis, J.: Property preserving simula-
tions. In: CAV. LNCS, vol. 663, pp. 260–273. Springer (1992), https://doi.org/10.
1007/3-540-56496-9 21

20. Bloom, B., Paige, R.: Transformational design and implementation of a new ef-
ficient solution to the ready simulation problem. Sci. Comput. Program. 24(3),
189–220 (1995), https://doi.org/10.1016/0167-6423(95)00003-B

21. Bouajjani, A., Fernandez, J., Halbwachs, N.: Minimal model generation. In:
CAV. LNCS, vol. 531, pp. 197–203. Springer (1990), https://doi.org/10.1007/
BFb0023733

22. Brinksma, E., Cleaveland, R., Larsen, K.G., Margaria, T., Steffen, B. (eds.): Tools
and Algorithms for Construction and Analysis of Systems, First International
Workshop, TACAS ’95, Aarhus, Denmark, May 19-20, 1995, Proceedings, LNCS,
vol. 1019. Springer (1995), https://doi.org/10.1007/3-540-60630-0

23. Bunte, O., Groote, J.F., Keiren, J.J.A., Laveaux, M., Neele, T., de Vink, E.P., Wes-
selink, W., Wijs, A., Willemse, T.A.C.: The mCRL2 toolset for analysing concur-
rent systems - improvements in expressivity and usability. In: TACAS. LNCS, vol.
11428, pp. 21–39. Springer (2019), https://doi.org/10.1007/978-3-030-17465-1 2

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1007/978-3-319-25150-9_33
https://doi.org/10.1007/978-3-319-25150-9_33
https://doi.org/10.1007/978-3-540-78499-9_9
https://doi.org/10.1007/978-3-540-78499-9_9
https://doi.org/10.1016/j.entcs.2009.06.011
https://doi.org/10.1007/3-540-60472-3_1
https://doi.org/10.1109/TASE.2012.9
https://doi.org/10.1016/j.tcs.2009.06.009
https://doi.org/10.1016/j.tcs.2009.06.009
https://doi.org/10.1007/978-3-642-24372-1_20
https://doi.org/10.1007/978-3-642-03466-4_7
https://doi.org/10.1007/3-540-56496-9_21
https://doi.org/10.1007/3-540-56496-9_21
https://doi.org/10.1016/0167-6423(95)00003-B
https://doi.org/10.1007/BFb0023733
https://doi.org/10.1007/BFb0023733
https://doi.org/10.1007/3-540-60630-0
https://doi.org/10.1007/978-3-030-17465-1_2

Simulation Relations and Applications in Formal Methods 17

24. Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification on infinite structures.
In: Handbook of Process Algebra, pp. 545–623. North-Holland / Elsevier (2001),
https://doi.org/10.1016/b978-044482830-9/50027-8

25. Bustan, D., Grumberg, O.: Simulation based minimization. In: CADE. LNCS,
vol. 1831, pp. 255–270. Springer (2000), https://doi.org/10.1007/10721959 20

26. Calzolai, F., Nicola, R.D., Loreti, M., Tiezzi, F.: TAPAs: A tool for the analysis
of process algebras. Trans. Petri Nets Other Model. Concurr. 1, 54–70 (2008),
https://doi.org/10.1007/978-3-540-89287-8 4

27. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: CONCUR. LNCS, vol. 3653, pp. 66–80.
Springer (2005), https://doi.org/10.1007/11539452 9

28. Cerans, K.: Decidability of bisimulation equivalences for parallel timer processes.
In: CAV. LNCS, vol. 663, pp. 302–315. Springer (1992), https://doi.org/10.1007/
3-540-56496-9 24

29. Cerans, K., Godskesen, J.C., Larsen, K.G.: Timed modal specification - theory and
tools. In: CAV. LNCS, vol. 697, pp. 253–267. Springer (1993), https://doi.org/10.
1007/3-540-56922-7 21

30. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994), https://doi.org/10.1145/
186025.186051

31. Cleaveland, R., Parrow, J., Steffen, B.: The concurrency workbench. In: Automatic
Verification Methods for Finite State Systems. LNCS, vol. 407, pp. 24–37. Springer
(1989), https://doi.org/10.1007/3-540-52148-8 3

32. Cleaveland, R., Parrow, J., Steffen, B.: The concurrency workbench: A semantics-
based tool for the verification of concurrent systems. ACM Trans. Program. Lang.
Syst. 15(1), 36–72 (1993), https://doi.org/10.1145/151646.151648

33. Cleaveland, R., Sims, S.: The NCSU concurrency workbench. In: CAV. LNCS,
vol. 1102, pp. 394–397. Springer (1996), https://doi.org/10.1007/3-540-61474-5 87

34. Clemente, L.: Büchi automata can have smaller quotients. In: ICALP.
LNCS, vol. 6756, pp. 258–270. Springer (2011), https://doi.org/10.1007/
978-3-642-22012-8 20

35. Clemente, L., Mayr, R.: Efficient reduction of nondeterministic automata with
application to language inclusion testing. Log. Methods Comput. Sci. 15(1) (2019),
https://doi.org/10.23638/LMCS-15(1:12)2019

36. Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems.
ACM Trans. Program. Lang. Syst. 19(2), 253–291 (1997), https://doi.org/10.1145/
244795.244800

37. Dams, D., Grumberg, O.: Abstraction and abstraction refinement. In: Hand-
book of Model Checking, pp. 385–419. Springer (2018), https://doi.org/10.1007/
978-3-319-10575-8 13

38. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: ECDAR: an
environment for compositional design and analysis of real time systems. In:
ATVA. LNCS, vol. 6252, pp. 365–370. Springer (2010), https://doi.org/10.1007/
978-3-642-15643-4 29

39. Dill, D.L., Hu, A.J., Wong-Toi, H.: Checking for language inclusion using simu-
lation preorders. In: CAV. LNCS, vol. 575, pp. 255–265. Springer (1991), https:
//doi.org/10.1007/3-540-55179-4 25

40. Enevoldsen, S., Larsen, K.G., Mariegaard, A., Srba, J.: Dependency graphs with
applications to verification. Int. J. Softw. Tools Technol. Transf. 22(5), 635–654
(2020), https://doi.org/10.1007/s10009-020-00578-9

https://doi.org/10.1016/b978-044482830-9/50027-8
https://doi.org/10.1007/10721959_20
https://doi.org/10.1007/978-3-540-89287-8_4
https://doi.org/10.1007/11539452_9
https://doi.org/10.1007/3-540-56496-9_24
https://doi.org/10.1007/3-540-56496-9_24
https://doi.org/10.1007/3-540-56922-7_21
https://doi.org/10.1007/3-540-56922-7_21
https://doi.org/10.1145/186025.186051
https://doi.org/10.1145/186025.186051
https://doi.org/10.1007/3-540-52148-8_3
https://doi.org/10.1145/151646.151648
https://doi.org/10.1007/3-540-61474-5_87
https://doi.org/10.1007/978-3-642-22012-8_20
https://doi.org/10.1007/978-3-642-22012-8_20
https://doi.org/10.23638/LMCS-15(1:12)2019
https://doi.org/10.1145/244795.244800
https://doi.org/10.1145/244795.244800
https://doi.org/10.1007/978-3-319-10575-8_13
https://doi.org/10.1007/978-3-319-10575-8_13
https://doi.org/10.1007/978-3-642-15643-4_29
https://doi.org/10.1007/978-3-642-15643-4_29
https://doi.org/10.1007/3-540-55179-4_25
https://doi.org/10.1007/3-540-55179-4_25
https://doi.org/10.1007/s10009-020-00578-9

18 Kim Guldstrand Larsen, Christian Schilling, and Jǐŕı Srba

41. Etessami, K.: A hierarchy of polynomial-time computable simulations for au-
tomata. In: CONCUR. LNCS, vol. 2421, pp. 131–144. Springer (2002), https:
//doi.org/10.1007/3-540-45694-5 10

42. Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: CONCUR. LNCS,
vol. 1877, pp. 153–167. Springer (2000), https://doi.org/10.1007/3-540-44618-4 13

43. Etessami, K., Wilke, T., Schuller, R.A.: Fair simulation relations, parity games,
and state space reduction for Büchi automata. SIAM J. Comput. 34(5), 1159–
1175 (2005), https://doi.org/10.1137/S0097539703420675

44. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transf. 15(2), 89–107 (2013), https://doi.org/10.1007/s10009-012-0244-z

45. Gauwin, O., Muscholl, A., Raskin, M.: Minimization of visibly pushdown au-
tomata is NP-complete. Log. Methods Comput. Sci. 16(1) (2020), https://doi.
org/10.23638/LMCS-16(1:14)2020

46. Gentilini, R., Piazza, C., Policriti, A.: From bisimulation to simulation: Coarsest
partition problems. J. Autom. Reason. 31(1), 73–103 (2003), https://doi.org/10.
1023/A:1027328830731

47. Gibson-Robinson, T., Armstrong, P.J., Boulgakov, A., Roscoe, A.W.: FDR3 - A
modern refinement checker for CSP. In: TACAS. LNCS, vol. 8413, pp. 187–201.
Springer (2014), https://doi.org/10.1007/978-3-642-54862-8 13

48. Girard, A., Julius, A.A., Pappas, G.J.: Approximate simulation relations for hybrid
systems. Discret. Event Dyn. Syst. 18(2), 163–179 (2008), https://doi.org/10.1007/
s10626-007-0029-9

49. Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous sys-
tems. IEEE Trans. Autom. Control. 52(5), 782–798 (2007), https://doi.org/10.
1109/TAC.2007.895849

50. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans.
Program. Lang. Syst. 16(3), 843–871 (1994), https://doi.org/10.1145/177492.
177725

51. Gurumurthy, S., Bloem, R., Somenzi, F.: Fair simulation minimization. In:
CAV. LNCS, vol. 2404, pp. 610–624. Springer (2002), https://doi.org/10.1007/
3-540-45657-0 51

52. Heizmann, M., Schilling, C., Tischner, D.: Minimization of visibly pushdown au-
tomata using partial Max-SAT. In: TACAS. LNCS, vol. 10205, pp. 461–478 (2017),
https://doi.org/10.1007/978-3-662-54577-5 27

53. Henzinger, T.A.: Hybrid automata with finite bisimulations. In: ICALP. LNCS,
vol. 944, pp. 324–335. Springer (1995), https://doi.org/10.1007/3-540-60084-1 85

54. Henzinger, T.A.: The theory of hybrid automata. In: LICS. pp. 278–292. IEEE
Computer Society (1996), https://doi.org/10.1109/LICS.1996.561342

55. Henzinger, T.A., Ho, P.: HYTECH: the Cornell HYbrid TECHnology tool. In:
Hybrid Systems. LNCS, vol. 999, pp. 265–293. Springer (1994), https://doi.org/
10.1007/3-540-60472-3 14

56. Henzinger, T.A., Ho, P., Wong-Toi, H.: Algorithmic analysis of nonlinear hybrid
systems. IEEE Trans. Autom. Control. 43(4), 540–554 (1998), https://doi.org/10.
1109/9.664156

57. Henzinger, T.A., Kopke, P.W.: State equivalences for rectangular hybrid automata.
In: CONCUR. LNCS, vol. 1119, pp. 530–545. Springer (1996), https://doi.org/10.
1007/3-540-61604-7 74

58. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hy-
brid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998), https://doi.org/10.
1006/jcss.1998.1581

https://doi.org/10.1007/3-540-45694-5_10
https://doi.org/10.1007/3-540-45694-5_10
https://doi.org/10.1007/3-540-44618-4_13
https://doi.org/10.1137/S0097539703420675
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.23638/LMCS-16(1:14)2020
https://doi.org/10.23638/LMCS-16(1:14)2020
https://doi.org/10.1023/A:1027328830731
https://doi.org/10.1023/A:1027328830731
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/s10626-007-0029-9
https://doi.org/10.1007/s10626-007-0029-9
https://doi.org/10.1109/TAC.2007.895849
https://doi.org/10.1109/TAC.2007.895849
https://doi.org/10.1145/177492.177725
https://doi.org/10.1145/177492.177725
https://doi.org/10.1007/3-540-45657-0_51
https://doi.org/10.1007/3-540-45657-0_51
https://doi.org/10.1007/978-3-662-54577-5_27
https://doi.org/10.1007/3-540-60084-1_85
https://doi.org/10.1109/LICS.1996.561342
https://doi.org/10.1007/3-540-60472-3_14
https://doi.org/10.1007/3-540-60472-3_14
https://doi.org/10.1109/9.664156
https://doi.org/10.1109/9.664156
https://doi.org/10.1007/3-540-61604-7_74
https://doi.org/10.1007/3-540-61604-7_74
https://doi.org/10.1006/jcss.1998.1581
https://doi.org/10.1006/jcss.1998.1581

Simulation Relations and Applications in Formal Methods 19

59. Henzinger, T.A., Kupferman, O., Rajamani, S.K.: Fair simulation. Inf. Comput.
173(1), 64–81 (2002), https://doi.org/10.1006/inco.2001.3085

60. Henzinger, T.A., Qadeer, S., Rajamani, S.K., Tasiran, S.: An assume-guarantee
rule for checking simulation. ACM Trans. Program. Lang. Syst. 24(1), 51–64
(2002), https://doi.org/10.1145/509705.509707

61. Henzinger, T.A., Rajamani, S.K.: Fair bisimulation. In: TACAS. LNCS, vol. 1785,
pp. 299–314. Springer (2000), https://doi.org/10.1007/3-540-46419-0 21

62. Hojati, R.: A BDD-Based Environment for Formal Verification of Hardware Sys-
tems. Ph.D. thesis, EECS Department, University of California, Berkeley (Jul
1996), http://www2.eecs.berkeley.edu/Pubs/TechRpts/1996/3052.html

63. Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton.
In: Theory of Machines and Computations, pp. 189–196. Academic Press (1971),
https://doi.org/10.1016/B978-0-12-417750-5.50022-1

64. Jančar, P., Srba, J.: Undecidability of bisimilarity by defender’s forcing. J. ACM
55(1), 1–26 (2008), https://doi.org/10.1145/1326554.1326559

65. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Comput.
22(6), 1117–1141 (1993), https://doi.org/10.1137/0222067

66. Julius, A.A., D’Innocenzo, A., Benedetto, M.D.D., Pappas, G.J.: Approximate
equivalence and synchronization of metric transition systems. Syst. Control. Lett.
58(2), 94–101 (2009), https://doi.org/10.1016/j.sysconle.2008.09.001

67. Juvekar, S., Piterman, N.: Minimizing generalized Büchi automata. In: CAV.
LNCS, vol. 4144, pp. 45–58. Springer (2006), https://doi.org/10.1007/11817963 7

68. Kucera, A., Mayr, R.: Why is simulation harder than bisimulation? In: CON-
CUR. LNCS, vol. 2421, pp. 594–610. Springer (2002), https://doi.org/10.1007/
3-540-45694-5 39

69. Kupferman, O., Vardi, M.Y.: Verification of fair transition systems. Chic. J. Theor.
Comput. Sci. 1998 (1998), http://cjtcs.cs.uchicago.edu/articles/1998/2/contents.
html

70. Kučera, A., Jančar, P.: Equivalence-checking with infinite-state systems: Tech-
niques and results. In: SOFSEM. LNCS, vol. 2540, pp. 41–73. Springer (2002),
https://doi.org/10.1007/3-540-36137-5 3

71. Lanotte, R., Tini, S.: Taylor approximation for hybrid systems. Inf. Comput.
205(11), 1575–1607 (2007), https://doi.org/10.1016/j.ic.2007.05.004

72. Laroussinie, F., Larsen, K.G., Weise, C.: From timed automata to logic - and back.
In: MFCS. LNCS, vol. 969, pp. 529–539. Springer (1995), https://doi.org/10.1007/
3-540-60246-1 158

73. Larsen, K.G., Nyman, U., Wasowski, A.: On modal refinement and consistency.
In: CONCUR. LNCS, vol. 4703, pp. 105–119. Springer (2007), https://doi.org/10.
1007/978-3-540-74407-8 8

74. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1-2), 134–152 (1997), https://doi.org/10.1007/s100090050010

75. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS. pp. 203–210. IEEE
Computer Society (1988), https://doi.org/10.1109/LICS.1988.5119

76. Larsen, K.G., Yi, W.: Time abstracted bisimulation: Implicit specifications and
decidability. In: MFPS. LNCS, vol. 802, pp. 160–176. Springer (1993), https://doi.
org/10.1007/3-540-58027-1 8

77. Lee, D., Yannakakis, M.: Online minimization of transition systems (extended
abstract). In: STOC. pp. 264–274. ACM (1992), https://doi.org/10.1145/129712.
129738

https://doi.org/10.1006/inco.2001.3085
https://doi.org/10.1145/509705.509707
https://doi.org/10.1007/3-540-46419-0_21
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1996/3052.html
https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://doi.org/10.1145/1326554.1326559
https://doi.org/10.1137/0222067
https://doi.org/10.1016/j.sysconle.2008.09.001
https://doi.org/10.1007/11817963_7
https://doi.org/10.1007/3-540-45694-5_39
https://doi.org/10.1007/3-540-45694-5_39
http://cjtcs.cs.uchicago.edu/articles/1998/2/contents.html
http://cjtcs.cs.uchicago.edu/articles/1998/2/contents.html
https://doi.org/10.1007/3-540-36137-5_3
https://doi.org/10.1016/j.ic.2007.05.004
https://doi.org/10.1007/3-540-60246-1_158
https://doi.org/10.1007/3-540-60246-1_158
https://doi.org/10.1007/978-3-540-74407-8_8
https://doi.org/10.1007/978-3-540-74407-8_8
https://doi.org/10.1007/s100090050010
https://doi.org/10.1109/LICS.1988.5119
https://doi.org/10.1007/3-540-58027-1_8
https://doi.org/10.1007/3-540-58027-1_8
https://doi.org/10.1145/129712.129738
https://doi.org/10.1145/129712.129738

20 Kim Guldstrand Larsen, Christian Schilling, and Jǐŕı Srba

78. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-
rithms. In: PODC. pp. 137–151. ACM (1987), https://doi.org/10.1145/41840.
41852

79. Majumdar, R., Zamani, M.: Approximately bisimilar symbolic models for digital
control systems. In: CAV. LNCS, vol. 7358, pp. 362–377. Springer (2012), https:
//doi.org/10.1007/978-3-642-31424-7 28

80. Mayr, R.: Process rewrite systems. Inf. Comput. 156(1-2), 264–286 (2000), https:
//doi.org/10.1006/inco.1999.2826

81. Mayr, R., Clemente, L.: Advanced automata minimization. In: POPL. pp. 63–74.
ACM (2013), https://doi.org/10.1145/2429069.2429079

82. Mazala, R.: Infinite games. In: Automata, Logics, and Infinite Games: A Guide to
Current Research. LNCS, vol. 2500, pp. 23–42. Springer (2001), https://doi.org/
10.1007/3-540-36387-4 2

83. Milner, R.: An algebraic definition of simulation between programs. In: IJCAI. pp.
481–489 (1971), http://ijcai.org/Proceedings/71/Papers/044.pdf

84. Moller, F.: Infinite results. In: CONCUR. LNCS, vol. 1119, pp. 195–216. Springer
(1996), https://doi.org/10.1007/3-540-61604-7 56

85. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987), https://doi.org/10.1137/0216062

86. Park, D.M.R.: Concurrency and automata on infinite sequences. In: Theoretical
Computer Science. LNCS, vol. 104, pp. 167–183. Springer (1981), https://doi.org/
10.1007/BFb0017309

87. Pola, G., Girard, A., Tabuada, P.: Approximately bisimilar symbolic models for
nonlinear control systems. Autom. 44(10), 2508–2516 (2008), https://doi.org/10.
1016/j.automatica.2008.02.021

88. Rauch Henzinger, M., Henzinger, T.A., Kopke, P.W.: Computing simulations on
finite and infinite graphs. In: FOCS. pp. 453–462. IEEE Computer Society (1995),
https://doi.org/10.1109/SFCS.1995.492576

89. Schewe, S.: Beyond hyper-minimisation—minimising DBAs and DPAs is NP-
complete. In: FSTTCS. LIPIcs, vol. 8, pp. 400–411. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2010), https://doi.org/10.4230/LIPIcs.FSTTCS.2010.400

90. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: CAV.
LNCS, vol. 1855, pp. 248–263. Springer (2000), https://doi.org/10.1007/10722167
21

91. Srba, J.: Roadmap of infinite results. In: Current Trends in Theoretical Computer
Science: The Challenge of the New Century, vol. 2, pp. 337–350. World Scientific
(2004)

92. Srba, J.: Beyond language equivalence on visibly pushdown automata. Log. Meth-
ods Comput. Sci. 5(1) (2009), http://arxiv.org/abs/0901.2068

93. Stirling, C.: Local model checking games. In: CONCUR. LNCS, vol. 962, pp. 1–11.
Springer (1995), https://doi.org/10.1007/3-540-60218-6 1

94. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In:
STOC. pp. 1–9. ACM (1973), https://doi.org/10.1145/800125.804029

95. Thomas, W.: On the Ehrenfeucht-Fräıssé game in theoretical computer science.
In: TAPSOFT. LNCS, vol. 668, pp. 559–568. Springer (1993), https://doi.org/10.
1007/3-540-56610-4 89

96. Tiwari, A.: Abstractions for hybrid systems. Formal Methods Syst. Des. 32(1),
57–83 (2008), https://doi.org/10.1007/s10703-007-0044-3

97. Urabe, N., Hasuo, I.: Fair simulation for nondeterministic and probabilistic Büchi
automata: a coalgebraic perspective. Log. Methods Comput. Sci. 13(3) (2017),
https://doi.org/10.23638/LMCS-13(3:20)2017

https://doi.org/10.1145/41840.41852
https://doi.org/10.1145/41840.41852
https://doi.org/10.1007/978-3-642-31424-7_28
https://doi.org/10.1007/978-3-642-31424-7_28
https://doi.org/10.1006/inco.1999.2826
https://doi.org/10.1006/inco.1999.2826
https://doi.org/10.1145/2429069.2429079
https://doi.org/10.1007/3-540-36387-4_2
https://doi.org/10.1007/3-540-36387-4_2
http://ijcai.org/Proceedings/71/Papers/044.pdf
https://doi.org/10.1007/3-540-61604-7_56
https://doi.org/10.1137/0216062
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1016/j.automatica.2008.02.021
https://doi.org/10.1016/j.automatica.2008.02.021
https://doi.org/10.1109/SFCS.1995.492576
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.400
https://doi.org/10.1007/10722167_21
https://doi.org/10.1007/10722167_21
http://arxiv.org/abs/0901.2068
https://doi.org/10.1007/3-540-60218-6_1
https://doi.org/10.1145/800125.804029
https://doi.org/10.1007/3-540-56610-4_89
https://doi.org/10.1007/3-540-56610-4_89
https://doi.org/10.1007/s10703-007-0044-3
https://doi.org/10.23638/LMCS-13(3:20)2017

Simulation Relations and Applications in Formal Methods 21

98. Yi, W.: CCS + time = an interleaving model for real time systems. In:
ICALP. LNCS, vol. 510, pp. 217–228. Springer (1991), https://doi.org/10.1007/
3-540-54233-7 136

https://doi.org/10.1007/3-540-54233-7_136
https://doi.org/10.1007/3-540-54233-7_136

	Simulation Relations and Applications in Formal Methods

